Spectral and scattering theory for topological crystals perturbed by infinitely many new edges

نویسندگان

چکیده

In this paper, we investigate the spectral and scattering theory for operators acting on topological crystals their perturbations. Special attention is paid to perturbations obtained by addition of an infinite number edges, and/or removal a finite them, but underlying measures multiplication operator are also considered. The description nature spectrum resulting existence completeness wave standard outcomes these investigations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Many disjoint edges in topological graphs

A simple topological graph is a graph drawn in the plane so that its edges are represented by continuous arcs with the property that any two of them meet at most once. Using a new tool developed in [12] we show that every simple topological graph on n vertices contains Ω(n 1 2 / √ log n) pairwise disjoint edges. This improves the previous lower bound of Ω(n 1 3 ) by Suk [17] and by Fulek and Ru...

متن کامل

Theory of topological edges and domain walls.

We investigate domain walls between topologically ordered phases in two spatial dimensions. We present a method which allows for the determination of the superselection sectors of excitations of such walls and which leads to a unified description of the kinematics of a wall and the two phases to either side of it. This incorporates a description of scattering processes at domain walls which can...

متن کامل

Equilibrium theory with asymmetric information and with infinitely many commodities

The traditional deterministic general equilibrium theory with infinitely many commodities cannot cover economies with private information constraints on the consumption sets. We bring the level of asymmetric information equilibrium theory at least at par with that of the deterministic. In particular, we establish results on equilibrium existence for exchange economies with asymmetric (different...

متن کامل

Existence of Infinitely Many Solutions for Perturbed Kirchhoff Type Elliptic Problems with Hardy Potential

In this article, by using critical point theory, we show the existence of infinitely many weak solutions for a fourth-order Kirchhoff type elliptic problems with Hardy potential.

متن کامل

Infinitely many solutions for a bi-nonlocal‎ ‎equation with sign-changing weight functions

In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Reviews in Mathematical Physics

سال: 2022

ISSN: ['1793-6659', '0129-055X']

DOI: https://doi.org/10.1142/s0129055x22500106